

BOLLETTINO SISMICO IBLEO _ numero 8 _ anno 2017

Libero Consorzio Comunale di Ragusa - già Provincia Regionale di Ragusa

Commissario Straordinario: Dario CARTABELLOTTA

tel 0932-652304/305 (segreteria) fax 0932-248825 mail segreteria.presidenza@provincia.ragusa.it

Realizzazione

Settore Ambiente e Geologia

Unità Operativa Complessa (U.O.C.) 2 – Servizi Geologici via Giuseppe Di Vittorio 175 – 97100 Ragusa <u>http://www.provincia.ragusa.it/geologia</u> <u>http://territorio.provincia.ragusa.it/geologia/home</u>

Contatti

Dirigente: Salvatore BUONMESTIERI

- tel 0932-675522
- fax 0932-675513
- mail salvatore.buonmestieri@provincia.ragusa.it
- pec segreteria.ambiente@pec.provincia.ragusa.it

Responsabile: Giuseppe ALESSANDRO

- tel 0932-675502
- mail giuseppe.alessandro@provincia.ragusa.it

Addetto: Rosario MINEO

- tel 0932-675552
- mail rosario.mineo@provincia.ragusa.it

Servizio Rete Sismometrica Provinciale / Rete Rilevamento Emissioni Gas Radon

- tel 0932-675552
- mail reti.geofisiche@provincia.ragusa.it

Disclaimer

Tutti i diritti di proprietà intellettuale relativi a questi dati e informazioni sono della Provincia Regionale di Ragusa e sono tutelati dalle leggi in vigore. La riproduzione del presente documento o di parte di esso è autorizzata solo dopo avere consultato la Dirigenza e se la fonte è citata in modo esauriente. Il materiale proposto può non essere esauriente, completo, preciso o aggiornato.

INDICE

INTR	ODUZIONE	4
ARE/	A DI MONITORAGGIO	5
STRU	JMENTAZIONE	7
DETE	ERMINAZIONE IPOCENTRALE	8
CALC	COLO DELLA MAGNITUDO	9
CATA	ALOGO SISMICO	10
1.	Distribuzione temporale degli eventi sismici	12
2.	Curva di strain-release	13
3.	Distribuzione della profondità ipocentrale	14
4.	Distribuzione delle magnitudo	15
5.	Distribuzione spaziale degli eventi sismici	16
BIE	BLIOGRAFIA	18

INTRODUZIONE

Questo numero del *Bollettino Sismico Ibleo* raccoglie le informazioni sull'attività sismica dell'area iblea nell'anno 2017, sulla base dei dati registrati dalle stazioni sismiche della *Rete Sismometrica Provinciale* tra il 01.01.2017 ed il 31.12.2017.

Sono descritte l'area di studio, la disposizione delle stazioni, le caratteristiche delle attrezzature, il modello di velocità crostale, l'algoritmo di calcolo degli ipocentri, le formule per il calcolo della magnitudo. Successivamente sono elencati i parametri spazio-temporali degli eventi sismici registrati su un numero di stazioni sufficiente per l'esecuzione di alcune analisi.

Per l'anno 2017 sono stati analizzati 14 eventi sismici. Non sono stati considerati gli eventi sismici registrati solamente su una o due stazioni (a causa di temporanei malfunzionamenti delle altre stazioni) perché in tal caso risulta impossibile definire per essi le coordinate dell'ipocentro.

Maggiori informazioni sugli eventi sismici registrati dalla *Rete Sismometrica Provinciale* (visualizzazione del sismogramma e della cartografia della zona epicentrale) sono disponibili al seguente indirizzo internet:

www.provincia.ragusa.it/geologia/sismi.php

AREA DI MONITORAGGIO

La **Tabella 1** elenca le stazioni fisse della *Rete Sismometrica Provinciale* le cui registrazioni sono state utilizzate per la redazione di questo *Bollettino*.

Tabella 1 – Elenco delle stazioni della Rete attive nell'anno 2017.

SIGLA	TIPO STAZIONE	COMUNE	LAT. N (WGS84)	LONG. E (WGS84)	QUOTA (m)
RAG	fissa	Ragusa	36,912°	14,725°	535
SCR	fissa	Santa Croce Camerina (RG)	36,833°	14,534°	109
GIA	fissa	Giarratana (RG)	37,050°	14,791°	583
ACT	fissa	Acate (RG)	37,024°	14,501°	202
ISI	fissa	Ispica (RG)	36,780°	14,903°	164

La disposizione delle stazioni della *Rete* all'interno del territorio provinciale è visualizzata in **Figura 1** (pagina seguente). È rappresentata anche l'area di studio definita dal poligono ABCDE, i cui vertici hanno le coordinate riportate in **Tabella 2**.

Tabella 2 – Coordinate geografiche dei vertici dell'area di studio.

VERTICE	LAT. N (WGS84)	LONG. E (WGS84)
А	37,3°	14,7°
В	37,3°	15,7°
С	36,3°	15,7°
D	36,3°	13,9°
E	37,0°	13,9°

La scelta di definire questa area di studio è subordinata ai limiti di applicabilità di un modello di velocità crostale per l'area iblea che non permette determinazioni epicentrali ed ipocentrali attendibili per eventi sismici localizzati nell'area etnea, nella Sicilia centrale, nell'alto lonio e nel basso Canale di Sicilia.

Quindi, sebbene nell'anno 2017 sono stati registrati 85 eventi sismici, in questo *Bollettino* saranno esaminati solo i 14 terremoti che ricadono all'interno dell'area di studio sopra definita e di cui è stato possibile determinare i parametri focali.

Figura 1 – Disposizione delle stazioni della Rete.

STRUMENTAZIONE

Le stazioni sismiche sono equipaggiate con attrezzature digitali le cui caratteristiche tecniche sono descritte nella **Tabella 3**.

Tabella 3 – Attrezzature delle stazioni della Rete.

ATTREZZATURA	CARATTERISTICHE
geofono <i>LE-3Dlite</i>	 numero di canali: 3 sensibilità: 400 V/m/s smorzamento interno: 0.707 critico frequenza naturale: 1 Hz frequenza d'angolo superiore: > 80 Hz RMS noise @ 1 Hz: < 3 nm/s full-scale range: ± 5 V peso: 1.8 kg dimensioni: diametro 97 mm, altezza 68 mm alimentazione: 12 V
digitalizzatore MARS-88/MC	 numero di canali: 3 campionamento: 16 bit intervallo di campionamento: 62.5 Hz sensibilità: 2 μV, 8 μV, 32 μV, 128 μV alimentazione: batteria tampone 10 Ah – 12 V DC registrazione: continua, a finestra temporale, triggerata trigger: puro STA/LTA, puro STA/soglia, combinazioni
antenna ricevente segnale DCF	 per la ricezione del segnale radio temporale codificato ad onde lunghe (77.5 kHz) e banda stretta (10 Hz) trasmesso in continuo da Francoforte (Germania)

Il *Centro Elaborazione Dati* (Foto 1), situato nei locali del *Settore Ambiente e Geologia*, gestisce i collegamenti telematici con le stazioni sismiche (collegate tramite un modem seriale per la trasmissione dei dati su linea telefonica analogica), acquisisce i dati registrati, elabora le informazioni raccolte mediante particolari software di analisi dati.

Foto 1 – Il Centro Elaborazione Dati di Ragusa.

DETERMINAZIONE IPOCENTRALE

La determinazione dell'ipocentro è stata eseguita, per gli eventi sismici registrati da almeno tre stazioni, con il software *DE* -*Determinazione Epicentrale* (F. Failla e S. Failla, GeoWaves, 2003), appositamente realizzato per la determinazione di ipocentri anche esterni alla *Rete*. Esso sfrutta l'adattamento per personal computer dei codici di B. Lienert dell'*HIGP-Hawai'i Institute of Geophysics and Planetology* [Lienert et al., 1986] e [Lienert et al., 1995].

L'analisi delle tracce sismiche è stata effettuata con il software PITSA (Programmable Interactive Tool for Seismic Analysis), attraverso l'analisi del particle motion, che ha permesso di leggere i tempi di arrivo delle fasi P e S con buona precisione.

Tabella 4 –	Modello	di	velocità	utilizzato	[Musumeci	et	al.,	2003
modificato].								

VELOCITÀ ONDE P (km/s)
2,230
5,657
6,254
6,336
6,499
7,900

Il modello di velocità crostale utilizzato per l'area iblea è un modello a 6 strati [Musumeci et al., 2003, modificato] con Vp/Vs = 1,732, schematizzato nella **Tabella 4** e rappresentato nella **Figura 2**.

Figura 2 – Modello di velocità utilizzato [Musumeci et al., 2003, modificato].

CALCOLO DELLA MAGNITUDO

La magnitudo locale Wood-Anderson equivalente (M_{WAeq}) è stimata misurando l'ampiezza delle onde S nel dominio delle frequenze e deducendo da essa l'ampiezza massima che si otterrebbe su un sismografo Wood-Anderson standard [Scherbaum e Stoll, 1983; Patanè et al., 1995].

Le equazioni usate nel calcolo della magnitudo sono mostrate nella **Tabella 5**. Per la stazione di Acate non esiste un'equazione di calcolo perché non è ancora disponibile una stima del coefficiente di risposta di sito (*b*).

Tabella 5 – Equazioni della magnitudo Wood-Anderson equivalente.

STAZIONE	MAGNITUDO	VALORE b
RAG	$M_{WAeq} = \log[(2800 \cdot A_{max})/(R \cdot b)] - (-2.90 \cdot \log \Delta + 2.80)$	0.69
SCR	$M_{WAeq} = \log[(2800 \cdot A_{max})/(R \cdot b)] - (-2.90 \cdot \log \Delta + 2.80)$	0.90
GIA	$M_{WAeq} = \log[(2800 \cdot A_{max})/(R \cdot b)] - (-2.59 \cdot \log \Delta + 2.17)$	0.98
ISI	$M_{WAeq} = \log[(2800 \cdot A_{max})/(R \cdot b)] - (-3.02 \cdot \log \Delta + 3.03)$	1.21

dove:

- A_{max} è l'ampiezza massima spettrale dello spostamento del suolo
- Δ è la distanza epicentrale in chilometri, misurata dalla stazione in esame
- *R* è il coefficiente di "radiation pattern" per le onde SH e vale *R* = 0,63
- *b* è il coefficiente di risposta di sito

CATALOGO SISMICO

La **Tabella 7** elenca i 14 eventi sismici registrati nell'anno 2017 dalle stazioni della *Rete Sismometrica Provinciale* con epicentro ricadente all'interno dell'area di studio definita in **Figura 1**. Sono presentati i seguenti dati:

- ID numero identificativo del terremoto nel database interno degli eventi sismici
- DATA data dell'evento sismico (gg/mm/aaaa)
- TEMPO tempo origine (UTC) dell'evento sismico (hh:mm:ss)
- LAT latitudine epicentrale in coordinate geografiche
 WGS84 (gradi e frazioni di grado)
- LONG longitudine epicentrale in coordinate geografiche WGS84 (gradi e frazioni di grado)
- PROF profondità dell'ipocentro in chilometri (il valore zero corrisponde al livello del mare)
- *M*_{WAeq} magnitudo Wood-Anderson equivalente
- LOC località più prossima all'epicentro

La conversione da ora *UTC* (*Tempo Universale Coordinato*) in ora locale si ottiene nel seguente modo:

- dall'ultima domenica di ottobre all'ultima domenica di marzo: ora locale = ora UTC + 1 ora
- dall'ultima domenica di marzo all'ultima domenica di ottobre: ora locale = ora UTC + 2 ore

Gli eventi sismici inseriti nell'elenco hanno gli errori massimi ammessi come mostrato nella **Tabella 6**.

Tabella 6 – Errori massimi ammessi.

PARAMETRO	SIGNIFICATO	VALORE MASSIMO
ERH	errore sulla latit./longit.	2 km
ERZ	errore sulla profondità	2 km
RMS	errore sul tempo origine	0,3 s

Eccezionalmente sono stati ammessi errori *ERH* ed *ERZ* pari a 3÷4 km, relativamente ad eventi sismici con epicentro in mare.

ID	DATA	ΤΕΜΡΟ	LAT	LONG	PROF	M _{WAeq}	LOC
3915	09/01/2017	10:19:06.79	36,929	14,920	15,7	1,3	12 km da Rosolini (SR)
3955	26/05/2017	16:11:31.79	36,755	14,828	22,8	2,2	4 km da Pozzallo (RG)
3957	21/06/2017	11:18:52.46	36,943	14,917	20,8	1,3	13 km da Palazzolo Acreide (SR)
3964	11/08/2017	01:13:41.72	37,041	14,985	9,3	1,2	7 km da Canicattini Bagni (SR)
3970	27/08/2017	03:00:14.11	37,104	14,742	2,9	1,1	2 km da Monterosso Almo (RG)
3977	10/10/2017	14:22:59.61	36,801	14,365	27,4	2,3	14 km da Santa Croce Camerina (RG)
3982	22/10/2017	15:15:46.24	36,745	15,130	25,6	2,3	5 km da Pachino (SR)
3987	08/12/2017	09:44:35.71	36,546	14,597	25,9	2,1	28 km da Scicli (RG)
3988	09/12/2017	07:15:29.83	36,543	14,663	26,8	2,3	26 km da Pozzallo (RG)
3990	13/12/2017	11:18:25.65	36,533	14,620	27,8	3,0	29 km da Scicli (RG)
3991	13/12/2017	11:52:13.59	36,527	14,542	27,4	3,2	32 km da Scicli (RG)
3992	14/12/2017	01:13:44.40	36,535	14,578	19,5	3,2	30 km da Scicli (RG)
3995	14/12/2017	01:59:18.43	36,528	14,567	13,0	3,4	31 km da Scicli (RG)
3998	25/12/2017	03:25:54.82	36,678	14,853	19,2	1,6	5 km da Pozzallo (RG)

Tabella 7 – Elenco degli eventi sismici registrati dal 01.01.2017 al 31.12.2017. Maggiori informazioni sugli eventi sismici registrati sono disponibili all'indirizzo: <u>www.provincia.raqusa.it/qeologia/sismi.php</u>

ANALISI DELLA SISMICITÀ

1. Distribuzione temporale degli eventi sismici

La **Figura 3** mostra il numero cumulativo degli eventi sismici localizzati dalle stazioni della *Rete Sismometrica Provinciale* nell'anno 2017. Quasi metà degli eventi riportati riguarda lo sciame sismico che ha interessato la zona del canale di Malta nei giorni compresi tra l'8 e il 14 dicembre 2017.

Figura 3 – Curva cumulativa degli eventi sismici localizzati nell'anno 2017.

2. Curva di strain-release

Un modo di esaminare la sismicità di un'area consiste nel considerare l'andamento temporale dello *strain-release*, cioè della deformazione avvenuta in seguito al rilascio dell'energia sismica.

Se si trascura l'energia persa sotto forma di calore e di deformazione permanente, allora lo *strain-release* (ε) può essere assunto proporzionale alla radice quadrata dell'energia sismica rilasciata [*Benioff, 1951*]:

$$\sqrt{E} = c \cdot \varepsilon$$

dove c è una costante dipendente dalle caratteristiche meccaniche e fisiche del volume roccioso in cui si è accumulata l'energia potenziale.

L'energia rilasciata si ricava dalla formula [Richter, 1958]:

$$og E = 9.9 + 1.9 \cdot M_L - 0.024 \cdot M_L^2$$

dove M_L è la magnitudo.

La curva di *strain-release* può fornire utili indicazioni sui rapporti che legano il rilascio di energia ai tempi di accumulo della stessa. Inoltre questo approccio permette il confronto qualitativo e quantitativo delle sismicità corrispondenti a diverse zone sismogenetiche.

La Figura 4 mostra la curva cumulativa di *strain-release* per gli eventi sismici registrati dalla Rete nell'anno 2017. La principale discontinuità nell'andamento dello *strain* è essenzialmente dovuta agli eventi più energetici dello sciame sismico che ha interessato la zona del canale di Malta nei giorni compresi tra l'8 e il 14 dicembre 2017 (M_{max} = 3.4).

3. Distribuzione della profondità ipocentrale

La **Tabella 8** e la **Figura 5** mostrano la distribuzione degli eventi sismici in classi di profondità dell'ipocentro.

Tabella 8 – Suddivisione degli	eventi in classi di	profondità
--------------------------------	---------------------	------------

PROFONDITÀ	EVENTI	PERCENTUALE
0 – 5	1	7 %
5 – 10	1	7 %
10 – 15	1	7 %
15 – 20	3	21 %
20 – 25	2	14 %
25 – 30	6	43 %
30 – 35	0	0 %
35 – 40	0	0 %

Figura 5 – Distribuzione delle profondità ipocentrali nell'anno 2017.

4. Distribuzione delle magnitudo

La Tabella 9 e la Figura 6 mostrano la distribuzione delle magnitudo calcolate.

Tabella 9 – Suddivisione	degli eventi in classi	di magnitudo.
--------------------------	------------------------	---------------

MAGNITUDO	EVENTI	PERCENTUALE
< 1,0	0	0 %
1,0 - 1,5	4	29 %
1,5 – 2,0	1	7 %
2,0 - 2,5	5	36 %
2,5 - 3,0	0	0 %
3,0 - 3,5	4	29 %
3,5 - 4,0	0	0 %

Figura 6 – Distribuzione delle magnitudo nell'anno 2017.

5. Distribuzione spaziale degli eventi sismici

La **Figura 7** (nella pagina seguente) mostra gli epicentri e gli ipocentri dei 14 eventi sismici registrati dalla *Rete Sismometrica Provinciale* nell'anno 2017 e ricadenti nell'area di studio. Sono stati considerati solo gli eventi sismici registrati da almeno tre stazioni, e per i quali è stato possibile definire con buona precisione i tempi di arrivo delle fasi P e S.

Gli eventi sono stati rappresentati tramite circonferenze il cui raggio (di dimensioni non omogenee con la scala di rappresentazione dell'area) è proporzionale a quello di un volume focale di geometria sferica [*Bath and Duda, 1964*].

Longitudine (°E)

BIBLIOGRAFIA

- Bath M. and Duda S.J. (1964): Earthquake volume, plain area, seismic strain, deformation and related quantities, *Ann. Geofis.*, 17, 353-368
- Benioff H. (1951): Earthquake and rock creep, part 1, Bull. Seism. Soc. Am., 58, 1583-1606
- Bormann P., IASPEI (2002): New Manual of Seismological Observatory Practice (NMSOP), GeoForschungsZentrum Potsdam, Potsdam, Germany
- Lienert B.R.E., Berg E. and Frazer L.N. (1986): Hypocenter: An earthquake location method using centered, scaled, and adaptively least squares, *Bull. Seismol. Soc. Am.*, 76, 771-783
- Lienert B.R.E. and Havskov J. (1995): A computer program for locating earthquakes both locally and globally, *Seis. Res. Lett.*, 66, 26-36
- Musumeci C., Di Grazia G. and Gresta S. (2003): Minimum 1-D velocity model in Southeastern Sicily (Italy) from local earthquake data: an improvement in location accuracy, Journal of Seismology, 7, 469-478
- Patanè G., Coco G., Corrao M., Imposa S., Montalto A. (1995): Source parameters of seismic events at Mount Etna volcano, Italy, during the outburst of the 1991-93 eruption, *Physics of the Earth and Planetary Interior*, 89, 149-162
- Patanè G., Coco G., Corrao M., Imposa S. (1993): Il terremoto ibleo del 13.12.1990: studio macrosismico e strumentale, Convegno annuale G.N.G.T.S. 1993 – ROMA

- Richter C.F. (1958): Elementary Seismology, Freeman and Co., San Francisco, CA, 768
- Scherbaum F. and Stoll D. (1983): Source parameters and scaling laws of the 1978 Swabian Jura (Southwest Germany) aftershocks, Bulletin of the Seismological Society of America, 73, 1321-1343

